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 In the present study, the role of social leadership in learning organiza-
tion is mimicked in developing an algorithm for the optimization of  
processes taking place in the industry. Here, the common behavior of the 
leaders (or ‘heroes’) present in the organization (or society) is considered and  
simulated for developing an evolutionary algorithm that can optimize  
multiple objectives simultaneously. The performance of this algorithm is 
then tested using test problems. Test problems play an important role in 
evaluating the performance of any multi-objective evolutionary algorithm 
(MOEA). Among a number of test problems available in the literature, WFG 
toolkit has its distinct place. In this paper, a two-objective optimization 
of nine WFG test-bed problems is carried out using a recently developed  
algorithm based on the social evolution, namely, Adaptive Social Evolution 
(ASE) algorithm. ASE takes its inspiration from the common social behavior 
of following the heroes present in the nearby society. The results obtained 
are promising for minimization of WFG problems. These are compared 
with the existing studies in the literature and found to be better in terms of 
convergence, operating structure and computational time. 
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INTRODUCTION

	 Peter Senge (Senge, 1990) 
popularized the term “learning 
organization”, which describes an 
organization with an ideal learning 
environment, perfectly in tune with its 
goals. In such organization employees 
persistently explore their capacity to 
create the results they actually desire, 
foster their patterns of thinking, and 
follow the phenomenon of continuous 
learning to constantly transform and 

achieve the desired set of objectives. 
Senge emphasized the role of the 
leader in the creation of such learning 
organization which encourages to a 
more interconnected way of thinking. 
Thus, such organization becomes more 
like a community for which employees 
(people) feel a commitment to and work 
harder for its success. A leader present 
in such an environment originates 
and develops the trend. He inspires 
the trust among the group members. 
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Such process in which one can benefit 
themselves as well as others present 
nearby for further improvement 
of individuals in the upcoming 
generations can be seen analogous in 
terms of the social environment, which 
is described in section 2. 

	 It has been seen that decision-
making in an organization involves 
more than one contradictory factors 
for fulfilling different objectives, 
which neither can be compared 
nor can be combined with each 
other. Until the 1970s, engineering 
processes mainly aspired to find 
the most efficient solution at least 
cost; and were considered as single 
criterion problems. Beyond 1990, the 
multi-criterion approaches led to a 
“paradigm shift” in decision-making as 
it became easy to solve the problems 
with multiple non-commensurate 
objectives. Such problems are termed 
as multi-objective optimization (MOO) 
problems. These require a search for 
the “best” configuration of a set of 
decision variables to attain desired 
goals or objectives. 

	 MOO problem (MOOP) 
formulation processes became popular 
in the 90s with the advent of several 
meta-heuristic algorithms viz. genetic 
algorithm (GA) (Holland, 1975), 
simulated annealing (SA) (Kirkpatrick, 
Gelatt, & Vecchi, 1983), etc. These 
algorithms are primarily based on 
the themes from nature, biological 
evolution, a phenomenon based on laws 
of physics and social behavior. Among 
these, the evolutionary algorithms 
mimic the concept of natural biology 
and include the techniques such as GA 

which simulates Darwin’s evolution 
principle in the context of genetics, 
differential evolution (DE) (Storn 
& Price, 1997) which simulates the 
perturbation of chromosomes with 
scaled differences, etc. Similarly the 
algorithms such as SA, gravitational 
search algorithm (GSA) (Rashedi, 
Nezamabadi-pour, & Saryazdi, 2009), 
etc. take the inspiration from the 
physical laws whereas, the swarm-
intelligence based algorithms take 
inspiration from the species showing 
collective behavior, such as birds, ants, 
wolf, etc. These are described next.

	 The various prominent 
representatives of swarm-based 
algorithms are particle swarm 
optimization (PSO) (Kennedy & 
Eberhart, 1995) which simulates 
the movement of particles those 
numerically directed by best-known 
positions of their own and that of the 
entire population present in the search-
space, ant colony optimization (ACO) 
(Dorigo, Maniezzo, & Colorni, 1996) 
which simulates the cooperative food 
searching strategy of ants, grey wolf 
optimizer (GWO) (Mirjalili, Mirjalili, 
& Lewis, 2014) which imitates the 
leadership style and hunting behavior of 
grey wolves present in nature, etc. All 
these algorithms have a common trait 
of mimicking the interesting features 
of different animals in the nature for 
their survival and food source. Further, 
the swarm-based algorithms have 
also tangled with the concepts from 
social behavior and evolution. Social 
spider optimization (SSO) algorithm 
(Cuevas, Cienfuegos, Zaldívar, & 
Pérez-cisneros, 2013) mimics the co-
operative hunting strategy of spiders. 
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In this, the spiders locate the positions 
of prey by analyzing the vibrations 
on the web. Social learning particle 
swarm optimization (SL-PSO) (Cheng 
& Jin, 2015) incorporates social 
learning phenomenon into PSO, where 
every particle learns from any other 
better particle(s) present in the swarm. 
Social learning optimization (SLO) 
(Liu, Chu, Song, Xue, & Lu, 2016) 
mimics the evolution process of human 
intelligence.

	 Several algorithms and their 
variants were extensively applied to 
real-life industrial problems and were 
reviewed by many researchers (Babu & 
Munawar, 2007; G.P. Rangaiah, 2009; 
Valadi & Siarry, 2014) in their study. 
Despite their phenomenal success, 
there still exist few challenges like 
slower and premature convergence, 
parameter tuning, complex algorithmic 
structure, which need to be addressed. 

Objective Behind the Study

	 From the above literature review, it 
is clear that several search strategies, 
social learning and feature adaptation 
strategies are reported in the literature 
to improve the performance of 
algorithms for optimization. However, 
these improved variants were often 
associated with increased number of 
operations and parameters (features) 
requiring a cumbersome parameter 
tuning before application. To overcome 
these shortcomings, there was a need 
of developing such an algorithm 
which is simple in structure, prevents 
premature convergence while retaining 
the faster speed of convergence. 
Moreover, the need of such algorithm 

becomes more obvious particularly 
for solving industrial MOOPs which 
often involve complicated problem 
equations requiring inordinately large 
computational time for each function 
calculation. Relatively less amount 
of attention is given on this in the 
literature. Hence, in order to cater these 
requirements and to address aforesaid 
shortcomings of existing algorithms, a 
novel real-coded hybrid algorithm is 
developed in the present work, namely 
Adaptive Social Evolution (ASE) 
which is based on “social evolution 
by following heroes” and utilizes the 
background knowledge of existing 
algorithms like GA and PSO.

	 In this chapter, the motivation 
used in developing the ASE algorithm 
is described in section 2, developed 
algorithm is described in section 3, 
results and discussion by comparing 
the obtained results with that of real-
coded version of non-dominated 
sorting PSO (NSPSO) (Sedighizadeh, 
Faramarzi, Mahmoodi, & Sarvi, 2014) 
for 9 benchmark optimization problem 
from two objective WFG test suite 
(Huband, Hingston, Barone, & While, 
2006) is described in section 4 followed 
by summary in section 5. ASE has 
been previously applied to problems 
from DTLZ test suite (Ghune, Trivedi, 
& Ramteke, 2014) and also to industrial 
processes (Ramteke, Trivedi, & Ghune, 
2013).

MOTIVATION FROM SOCIAL 
EVOLUTION

	 The phenomenon of social 
evolution has some unique features 
as compared to the natural biological 
evolution process, e.g. society 
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indulges in transformation willingly 
and purposefully depending upon 
the circumstances and can transform 
completely even more than once by 
inheriting the acquired characteristics 
(Grinin, Korotayev, & Markov, 2011). 
These properties make social evolution 
proceed faster than biological 
evolution. The individuals are the 
basic unit of a society; they adapt and 
improve through mutual interactions. 
Some of these individuals (within 
the society) have such a quality that 
enables them to influence a larger 
section of individuals in the society. 
Such individuals are termed as 
‘heroes’ or leaders. Many individuals 
improve themselves by inheriting 
the characteristics from these heroes. 
Also, multiple heroes can be present 
in a society at the same time. So, there 
is a substantial chance of heroes being 
improved through the interactions 
with the other heroes present in the 
society.

	 This behavioral pattern resembles 
the progress of the population-based 
optimization algorithms in which 
the major changes occur in initial 
populations whereas the populations 
in later generations become more 
and more stable, finally achieving 
the convergence for optimality. This 
analogy suggests that the concept of 
social evolution can be utilized to 
improve the convergence speed of 
an algorithm at least in the initial 
generations and has a direct relevance 
in solving the complex industrial 
problems. This is accomplished in ASE 
using the operators, namely, following 
heroes (FH) and personalized deviation 
(PD).

	 Let us consider an example of a 
great Indian leader turned politician, 
M. K. Gandhi whose ideology of truth, 
equality, and non-violence inspired the 
common men present in the society at 
that time. The characteristics of this 
hero further influenced other great 
leaders in the context of African and 
American society; namely, Nelson 
Mandela and Martin Luther King Jr. 
respectively. These leaders were the 
source of inspiration for the common 
men in the society and inherited the 
characteristics from M. K. Gandhi. 
This is a continuous process where 
the leaders keep on shaping the future 
generations. A similar analogy is taken 
into consideration for the development 
of FH operator, where multiple heroes 
are identified which inspire each other 
as well as the rest of the individuals. 
Thus, the overall population improves 
over the generations and the individuals 
with better characteristics become 
heroes in the future generations.

	 As per the general observation, 
it has been found that in addition to 
the social behavior of being inspired 
by others or heroes, there also 
prevails a self-induced change in 
one’s personality which may lead to 
the transformation of that individual. 
Considering the same illustration to 
show such transformation, where 
M. K. Gandhi who used to be a well-
dressed young lawyer, later became 
an austerely dressed freedom fighter. 
Martin Luther King Jr. who was 
awarded a doctorate in theology at a 
young age later became the leader of 
Civil Rights Movement for combating 
racial inequality through non-violence 
in America. Nelson Mandela started his 
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childhood by living a tribal life, grew 
up by facing racism and later became 
the President of South Africa. Such 
facets are mimicked in PD operator 
in which the selected characteristics 
of the individuals are perturbed 
randomly.

	 Though the impact of heroes in 
the society is explored by several 
researchers in detail (Bligh & 
Robinson, 2010; Kurtz, 2010) in the 
context of sociology, the present 
study incorporates the simplest 
interpretation of the aforementioned 
concept. The implementation of this 
theme to constitute an optimization 
algorithm is described next.

ASE ALGORITHM

	 ASE algorithm proceeds in the 
following order of steps: initialization, 
fitness calculation, ranking (Deb, 2001), 
following heroes (FH), personalized 
deviation (PD) and elitism (Deb, 2001). 
The flowchart of ASE is shown in Fig. 
1. The algorithm initiates with the 
random generation of a population 
consisting NP solutions (individuals). 
Each individual is an array of 
decision variables in which a variable 
resembles a specific characteristic of 
that individual. These individuals are 
generated by randomly generating the 
characteristics (variables) within the 
predefined lower-upper bounds as 
follows:

, , , ,( )= + × −Low High Low
i j i j i j i jX X RN X X  ... (1)

	 Here, Xi, j is jth characteristic 
(variables) of the ith individual 
(solution) and RN is the random 
number [ ]0,1∈ . This process is repeated 
for all NP individuals.

	 Each individual is then ranked 
according to its goodness. The 
goodness is represented through the 
fitness function (ffi) and is calculated 
based on characteristics of an 
individual. Next, the individuals with 
rank =1 are designated as heroes (see 
Box H in Fig. 1). All individuals in the 
population are sequentially inspired 
from randomly selected heroes in the 
FH operator with a probability PFH 
to improve their characteristics (see 
Box P’’). This operator perturbs the 
original value of a given characteristic 
with that of a randomly selected hero. 
In this way, all the characteristics of 
an individual are perturbed to the 
inspired characteristics using that of 
different heroes. All NP members of the 
population undergo this inspiration 
process one after another. In this, jth 
characteristic of an ith individual is 
inspired as follows:

, , , ,( )New Old Hero Old
i j i j h j i jX X RN X X= + × −                                                       ...(2)

                                                        

Here, ,
Hero
h jX  is jth characteristic of 

randomly selected hth hero.
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Ngen = 0 

Box P’ (Np): Rank all Np individuals 

Box P’’ (Np): Operate Np individuals using N Heroes  
in the Following Heroes operator 

Box P’’’ (Np): Operate Np individuals in the 
Personalized Deviation operator 

Box PP’’’ (2Np): Mix the original population P  
with modified population P’’’ 

Box GPP’’’ (2Np): Re-rank the 
population globally 

Box E (Np): Select the best Np 
from GPP’’’ 

Ngen < NMaxgen 
Ngen = Ngen + 1 

E→ P’ 
 

Box P (Np): Generate Np individuals and calculate its Fitness 

Y
es o 

Return E as 
Optimal Front 

 

E
litism 

Box H: Select best N individuals as Heroes 
(Rank=1) 

 

Fig. 1: Flowchart of ASE by Following Heroes.

Yes

Despite perturbation occurring in FH 
operation, the simulated social structure 
needs to be perturbed more rigorously 
for the further consistent emergence 
of better heroes having higher fitness 
in each generation and inhibiting the 
trapping in the local optima. This is 
enhanced by incorporating the concept 
of random perturbation from artificial 
intelligence. This is achieved in 
personalized deviation (PD) operation 
in which the characteristics (variables) 
of the inspired individuals from FH 

operation are perturbed randomly with 
a probability PPD (see Box P’’’). This is 
carried out on a selected individual by 
replacing its characteristic (variable) 
values by freshly generated random 
values between their numerical 
bounds as follows: 

, , , ,( )New Low High Low
i j i j i j i jX X RN X X= + × −

...(3)	

	 This modified (improved) 
population after PD operation may 
also lead to some bad solutions, which 
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are ‘screened’ out in Elitism operation; 
originally developed for GA. In this step, 
the modified population (NP) is mixed 
with the original initial population (NP) 
(see Box PP’’’). These 2NP individuals 
are re-ranked (see Box GPP’’’) and the 
best NP individuals from this mixed 
population are selected as elites (see 
Box E). These NP best solutions then 
form the starting population for the 
following generation and the process 
is iterated till the algorithm converges 
to the optimal solutions, or till the 
completion of a maximum (specified) 
number of generations. The developed 
algorithm has only three parameters 
i.e. population size (NP), probabilities 
of FH (PFH) and PD (PPD) operations.

RESULTS AND DISCUSSION

	 The efficacy of ASE algorithm is 
analyzed quantitatively by solving 
nine test problems from WFG test 
suite (WFG1-WFG9), each scaled for 
2 objectives (2D) (Huband, Hingston, 
Barone, & While, 2006). The test or 
benchmark problems act as a test bed 
for evaluating the performance of any 
optimization algorithm by analyzing 
the ability in handling the constraints 
and convergence capability to achieve 
the near optimal solutions. They also 
represent the complexities associated 
with various real-world based 
problems.

	 The performance of ASE is then 
evaluated by comparing the results with 
NSPSO on the basis of two well-known 
metrics i.e. generational distance (GD) 
(Van Veldhuizen & Lamont, 1998) and 
spacing (S) (Schott, 1995). The lower 
value of GD and S approaching ≈ 0 

indicates the better convergence and 
evenly spaced distribution respectively. 
The parameters used in the compared 
algorithm: NSPSO and ASE are given in 
Table 1 and are selected as best values 
reported in the literature (Ghune et al., 
2014; Sedighizadeh et al., 2014).

	 ASE is first applied to 9 test 
problems from WFG test suites. 
Formulation and characteristics of 
WFG problems are given in Annexure 
Table A.1 and A.2. Each of these 
problems is executed for 50 different 
random numbers and the average 
values (AV) of GD and S with their 
standard deviations (SD) are reported. 
These results are then compared to 
that obtained using NSPSO as given in 
Tables 2-4 in the format of AV±SD.

	 Table 2 shows the comparison of 
GD metric values of ASE and NSPSO 
for 50, 100, 200, and 500 generations. In 
these results, ASE is found to be having 
better values for 7, 6, 6 and 5 problems 
for 50, 100, 200 and 500 generations, 
respectively in comparison with 
NSPSO (marked ‘bold’). The results 
in the smaller number of generations 
show better convergence using 
ASE than using NSPSO and thus 
establish its usefulness for the real-
life industrial problems where the 
numbers of generations are severely 
restricted (Kasat & Gupta, 2003; 
Masuduzzaman & Rangaiah, 2009). 
The results also indicate that the 
number of problems where ASE is 
superior to NSPSO decreases with the 
increase in a number of generations as 
both algorithm approaches to global 
optimality. 
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	 Further, in Table 3 the comparison 
of S metric values of ASE and NSPSO 
is reported for 500 generations as the 
results are only compared after the 
maximum convergence for most of the 
problems. The result clearly shows 
that ASE has a better spacing for all 
9 problems compared to NSPSO and 
confirms its superiority. 

	 Also, the performance of ASE 
algorithm is further analyzed in terms 
of CPU time in Table 4. Here, the CPU 

time (secs) required by NSPSO and ASE 
to execute 50 different random runs of 
all nine problems for 500 generations 
on a workstation (Intel Xeon (R) E5 
– 2640 @ 2.50 GHz processor, 16 
GB RAM, and Windows 10 OS) is 
compared. The comparison shows that 
the CPU time of ASE is lower for all 
problems. This achieves the objective 
of the faster speed of convergence 
along with the simpler structure of the 
developed algorithm.

Table 1: Parameters used for NSPSO and ASE.

NSPSO ASE
NP 100 NP 100
w 0.4 - 0.9 PFH 0.9
c1 2.0 PPD 0.1
c2 2.2

Table 2: Comparison of GD metric for NSPSO and ASE for varying number of generations.

WFG-2D
50 Generations 100 Generations 200 Generations 500 Generations

NSPSO ASE NSPSO ASE NSPSO ASE NSPSO ASE

WFG1
0.1242 ± 

0.0005
0.1220 ± 

0.0008
0.1225 ± 

0.0004
0.1185 ± 

0.0009
0.1201 ± 

0.0006
0.1147 ± 

0.0013
0.1150 ± 

0.0007
0.1091 ± 

0.0026

WFG2
0.0116 ± 

0.0017
0.0943 ± 

0.0104
0.0064 ± 

0.0013
0.0982 ± 

0.0095
0.0029 ± 

0.0005
0.0984 ± 

0.0082
0.0017 ± 

0.0002
0.0917 ± 

0.0102

WFG3
0.0102 ± 

0.0013
0.0056 ± 

0.0010
0.0052 ± 

0.0010
0.0044 ± 

0.0008
0.0039 ± 

0.0007
0.0025 ± 

0.0004
0.0036 ± 

0.0004
0.0013 ± 

0.0001

WFG4
0.0119 ± 

0.0005
0.0114 ± 

0.0004
0.0100 ± 

0.0004
0.0096 ± 

0.0004
0.0083 ± 

0.0006
0.0080 ± 

0.0005
0.0040 ± 

0.0002
0.0042 ± 

0.0004

WFG5
0.0269 ± 

0.0077
0.0507 ± 

0.0026
0.0083 ± 

0.0014
0.0420 ± 

0.0030
0.0066 ± 

0.0002
0.0313 ± 

0.0025
0.0062 ± 

0.0000
0.0206 ± 

0.0013

WFG6
0.0205 ± 

0.0014
0.0144 ± 

0.0025
0.0152 ± 

0.0013
0.0080 ± 

0.0014
0.0095 ± 

0.0016
0.0055 ± 

0.0008
0.0045 ± 

0.0009
0.0044 ± 

0.0005

WFG7
0.0232 ± 

0.0009
0.0227 ± 

0.0013
0.0183 ± 

0.0007
0.0215 ± 

0.0018
0.0045 ± 

0.0005
0.0179 ± 

0.0015
0.0017 ± 

0.0002
0.0130 ± 

0.0015
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WFG8
0.0304 ± 

0.0016
0.0283 ± 

0.0022
0.0257 ± 

0.0010
0.0253 ± 

0.0017
0.0224 ± 

0.0008
0.0222 ± 

0.0003
0.0186 ± 

0.0005
0.0185 ± 

0.0004

WFG9
0.0111 ± 

0.0016
0.0098 ± 

0.0023
0.0084 ± 

0.0016
0.0078 ± 

0.0020
0.0069 ± 

0.0023
0.0062 ± 

0.0018
0.0049 ± 

0.0012
0.0042 ± 

0.0016

Table 3: Comparison of S metric for NSPSO and ASE over 500 generations.

WFG-2D NSPSO ASE

WFG1 0.0239 ± 0.0025 0.0058 ± 0.0021

WFG2 0.0183 ± 0.0031 0.0155 ± 0.0042

WFG3 0.0280 ± 0.0024 0.0200 ± 0.0029

WFG4 0.0339 ± 0.0042 0.0222 ± 0.0054

WFG5 0.0337 ± 0.0027 0.0221 ± 0.0061

WFG6 0.0358 ± 0.0042 0.0230 ± 0.0046

WFG7 0.0377 ± 0.0035 0.0225 ± 0.0034

WFG8 0.0341 ± 0.0034 0.0305 ± 0.0109

WFG9 0.0353 ± 0.0038 0.0292 ± 0.0108

Table 4: Comparison of CPU time for NSPSO and ASE over 500 generations.

WFG-2D NSPSO ASE

WFG1 161.64 104.50

WFG2 153.17 103.64

WFG3 207.82 105.78

WFG4 208.23 105.52

WFG5 210.39 106.16

WFG6 199.37 96.30

WFG7 183.04 95.50

WFG8 180.25 102.34

WFG9 156.25 118.89
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Table A.2: Mathematical formulations of WFG problems and their characteristics 
(Huband et al., 2006).

ANNEXURE

Table A.1: General formulations and details of WFG problems (Huband et al., 2006) 

Given,  

1 1{ , , , , , }k k nZ z z z z  

      1 1,max ,max0,1 1, 0,1 , 0,1{ , , } { / , , / }n nnZ z z z z z z   

   1 1
10,1 ... , ,p p p p

MZ t t t t t     ; where it is the ith transformation 

        1 1 1 1 1, , max , 0.5 0.5,..., max , 0.5 0.5,p p p p p
M M M M M MX x x t A t t A t t        

Minimize  

   1: 1 1, ,m M M m m MOF X Dx S h x x    

Where Z, t, A, X, D, S and h are Working Parameter, Transition Parameter, Degeneracy Constant, Position & 

Distance Vector, Distance Scaling Constant, Scaling Constant and Shape Function respectively. Here, M = 2 for two 

objective formulation and n = 24. 

1: 1 2: 1

1,

0, 3
2 ; 1; 1,m M M

otherwise
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S m D A A 
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
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
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SHAPE FUNCTIONS

Linear, Convex, Concave, Mixed (convex/
concave), Disconnected

TRANSFORMATION FUNCTIONS

Bias: Polynomial, Flat Region,  Parameter 
Dependent

Shift: Linear, Deceptive, Multi-modal

Reduction: Weighted Sum, Non-separable

Note: Refer (Huband et al., 2006) for detailed 
shape and transformation functions
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t r sum y y

 
 



       

     

 



   









 

[0,2i] Convex, 
Disconnected 

Non-
Separable 

Unimodal 
except OFm 

No - 

WFG3 
 

1:

1:3

( )

2( , ,
)

m M mh linear degenerate

Ast fromWFG linear shift non-separable
weighted sumreduction

 

 [0,2i] Linear, 
Degenerate 

Non-
Separable 

Unimodal No - 

WFG4 
 

 
    

    

1:

1
1:

2
1: 1 ( 1) /( 1) 1 /( 1)

2
1 / 2

_ ,30,10,0.35

_ , , , 1, ,1

_ , , , 1, ,1

m M m

i n i

i M i k M ik M

M k k l

h concave

t s multi y

t r sum y y

t r sum y y





     

 









 

[0,2i] Concave Separable Multimodal No - 

WFG5 
 

 
1:

1
1:

2

_ ,0.35,0.001,0.05

4( )

m M m

i n i

h concave

t s decept y

As t fromWFG weighted sumreduction









 

[0,2i] Concave Separable Deceptive No - 



Nitish Ghune, SharmaVolume 11, Issue 2 2017

45

Name of 
Problem Formulation Parameter 

Domain 

Characteristics 

Geometry Separability Modality Bias 
Many-
to-one 

Mapping 

 
WFG1 

 
 

 
 
 

1: 1

1
1:

1
1:

2
1:

2
1:

3
1:

( 1) /( 1) 1 /( 1)4
1: 1

2( 1) /( 1) 1,

( 1 5)

_ ( ,0.35

_ ,0.8,0.75,0.85

_ ,0.02

, , ,
_

)

m M m

M M

i k i

i k n i

i k i

i k n i

i n i

i k M ik M
i M

i k M

h convex

h mixed with and A
t y

t s linear y

t y

t b flat y

t b poly y

y y
t r sum


 



 



 



   
 

  



  












 

    4
1

, 2 /( 1)

_ , , , 2( 1), ,2M k n

ik M

t r sum y y k n



 
 
 
 

 

 

Note: Refer Table A.1 for specific information 

about general formulation, shape, and 

transformation functions for all WFG problems. 

[0,2i] Convex, 
Mixed 

Separable Unimodal 
Polynomial, 

Flat 
- 

WFG2   
    

    

1: 1

1

2
1:

2
1: / 2 2( ) 1 2( )

3
1: 1 ( 1) /( 1) 1 /( 1)

3
1 / 2

( 1 5)

1( )

_ , ,2

_ , , , 1, ,1

_ , , , 1, ,1

m M m

M M

i k i

i k k l k i k k i k

i M i k M ik M

M k k l

h convex
h disc with and A
Ast fromWFG linear shift
t y

t r nonsep y y

t r sum y y

t r sum y y

 
 



       

     

 



   









 

[0,2i] Convex, 
Disconnected 

Non-
Separable 

Unimodal 
except OFm 

No - 

WFG3 
 

1:

1:3

( )

2( , ,
)

m M mh linear degenerate

Ast fromWFG linear shift non-separable
weighted sumreduction

 

 [0,2i] Linear, 
Degenerate 

Non-
Separable 

Unimodal No - 

WFG4 
 

 
    

    

1:

1
1:

2
1: 1 ( 1) /( 1) 1 /( 1)

2
1 / 2

_ ,30,10,0.35

_ , , , 1, ,1

_ , , , 1, ,1

m M m

i n i

i M i k M ik M

M k k l

h concave

t s multi y

t r sum y y

t r sum y y





     

 









 

[0,2i] Concave Separable Multimodal No - 

WFG5 
 

 
1:

1
1:

2

_ ,0.35,0.001,0.05

4( )

m M m

i n i

h concave

t s decept y

As t fromWFG weighted sumreduction









 

[0,2i] Concave Separable Deceptive No - 

 

WFG6 
   

  

1:

1

2
1: 1 ( 1) /( 1) 1 /( 1)

2
1

1( )

_ , , , /( 1)

_ , , ,

m M m

i M i k M ik M

M k n

h concave

Ast fromWFG linear shift

t r nonsep y y k M

t r nonsep y y l



     





 



 

[0,2i] Concave Non-
Separable 

Unimodal No - 

WFG7 

    

1
1:

1:

1 1
1:

1

2

0.98, _ , , , 1, ,1 , ,
_ 49.98

0.02,50

1( )
4( )

i k n

m M m

i i n
i k

i

h concave

y r sum y y
t b param

t y

Ast fromWFG linear shift
As t fromWFG weighted sumreduction

 










 
    
 

 

[0,2i] Concave Separable Unimodal 
Parameter 
Dependent 

- 

WFG8 
 

    

1:

1
1:

1 1 1
1:

1

2

0.98, _ , , , 1, ,1 , ,
_ 49.98

0.02,50

1( )
4( )

m M m

i k i

i i
i k n

h concave

t y

y r sum y y
t b param

Ast fromWFG linear shift
As t fromWFG weighted sumreduction






 





 
    
 

 

[0,2i] Concave 
Non-

Separable 
Unimodal 

Parameter 
Dependent 

- 

WFG9 

    
1:

1 1
1: 1

1

2
1:

2
1:

2

0.98, _ , , , 1, ,1 , ,
_ 49.98

0.02,50

_ ( ,0.35,0.001,0.05)

_ ( ,30,95,0.35)

6(  )

m M m

i i n
i n

n n

i k i

k n i

h concave

y r sum y y
t b param

t y

t s decept y

t s multi y

Ast fromWFG non separable reduction




 







 
    
 








 

[0,2i] Concave 
Non-

Separable 
Multimodal, 
Deceptive 

Parameter 
Dependent 

- 
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